Zhang, K., et al., The non-toxigenic Clostridium difficile CD37 protects mice against infection with a BI/NAP1/027 type of C. difficile strain. Anaerobe, 2015. 36: p. 49-52.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4663165/


Wang, Y.-K., et al., A chimeric protein comprising the glucosyltransferase and cysteine proteinase domains of toxin B and the receptor binding domain of toxin A induces protective immunity against Clostridium difficile infection in mice and hamsters. Human Vaccines & Immunotherapeutics, 2015. 11(9): p. 2215-2222.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4635733/


Yong, Y., et al., Identification and functional characterization of Toll-like receptor 2–1 in geese. BMC Veterinary Research, 2015. 11: p. 108.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4449522/


Huang, T., et al., Clostridium difficile toxin B intoxicated mouse colonic epithelial CT26 cells stimulate the activation of dendritic cells. Pathogens and Disease, 2015. 73(3): p. ftv008.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4435672/


Wang, Y.-K., et al., Screening of Single-Stranded DNA (ssDNA) Aptamers against a Zearalenone Monoclonal Antibody and Development of a ssDNA-Based Enzyme-Linked Oligonucleotide Assay for Determination of Zearalenone in Corn. Journal of Agricultural and Food Chemistry, 2015. 63(1): p. 136-141.

https://doi.org/10.1021/jf503733g


Sponseller, J.K., et al., Hyperimmune Bovine Colostrum as a Novel Therapy to Combat Clostridium difficile Infection. The Journal of Infectious Diseases, 2015. 211(8): p. 1334-1341.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4447838/


Sun, X. and S.A. Hirota, The roles of host and pathogen factors and the innate immune response in the pathogenesis of Clostridium difficile infection. Molecular immunology, 2015. 63(2): p. 193-202.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4254213/


Publications

2019

Peng Z, Wang S, Gide M, Zhu D, Lamabadu W P H M, Li C, Cai J, Sun X. A Novel Bacteriophage Lysin-Human Defensin Fusion Protein Is Effective in Treatment of Clostridioides difficile Infection in Mice, 2019.   
https://www.frontiersin.org/articles/10.3389/fmicb.2018.03234/full

Daou N, Wang Y, Levdikov VM, Nandakumar M, Livny J, Bouillaut L, Blagova E, Zhang K, Belitsky BR, Rhee K, Wilkinson AJ, Sun X, Sonenshein AL. Impact of CodY protein on metabolism, sporulation and virulence in Clostridioides difficile ribotype 027. PloS one. 14(1) : e0206896, 2019. 

http://www.ncbi.nlm.nih.gov/pubmed/30699117


Zhu D, Bullock J, He Y, Sun X. Cwp22, a novel peptidoglycan cross-linking enzyme, plays pleiotropic roles in Clostridioides difficile. Environmental microbiology. 21(8) : 3076-3090, 2019. 

http://www.ncbi.nlm.nih.gov/pubmed/31173438


2014

2016

Zhao, S., et al., Immune-based treatment and prevention of Clostridium difficile infection. Human Vaccines & Immunotherapeutics, 2014. 10(12): p. 3522-3530.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4514135/


Kim, H.B., et al., Beneficial Effect of Oral Tigecycline Treatment on Clostridium difficile Infection in Gnotobiotic Piglets. Antimicrobial Agents and Chemotherapy, 2014. 58(12): p. 7560-7564.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4249528/


Ali, Y., et al., Temperate Streptococcus thermophilus phages expressing superinfection exclusion proteins of the Ltp type. Frontiers in Microbiology, 2014. 5: p. 98.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3952083/


Kim H, B, Q, Zhang X, Sun G, Beamer D, Schmidt Y, Wang & S, Tzipori. Effect of oral tigecycline treatment on Clostridium difficile and human gut microflora. Antimicrob Agents Chemother.. 58(12) : 7560-4, 2014.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4249528/

Zhang K, S, Martinod & X, Sun. Clostridium difficile infection in horses. Austin J Vet Sci & Anim Husb.. 1(1) : 5, 2014.

http://austinpublishinggroup.com/veterinary-science-research/fulltext/avsah-v1-id1002.php

Zhao S, C, Ghose-Paul KS Zhang S, Tzipori and X, Sun. Clostridium difficile infection: virulence factors, adaptive immunity and vaccine development. Austin J Infect Dis.. 1(1) : 7, 2014.

http://austinpublishinggroup.com/infectious-diseases/fulltext/ajid-v1-id1004.php

Zhang J, X, Rui L, Wang Y, Guan X, Sun M, Dong. Polyphenolic extract from Rosa rugosa tea inhibits bacterial quorum sensing and biofilm formation. Food Control. 42: 125-131, 2014.

https://www.sciencedirect.com/science/article/pii/S0956713514000577

Wang Y, K, Q, Zou J, H, Sun H, A, Wang X, Sun Z, F, Chen Y, X, Yan. Screening of ssDNA aptamers against a zearalenone monoclonal antibody and development of a ssDNA-based enzyme-linked oligonucleotide assay for determination of zearalenone in corn. J Agric Food Chem.. , 2014.

https://www.ncbi.nlm.nih.gov/pubmed/25485848

Schmidt, D.J., et al., A Tetraspecific VHH-Based Neutralizing Antibody Modifies Disease Outcome in Three Animal Models of Clostridium difficile Infection. Clinical and Vaccine Immunology : CVI, 2016. 23(9): p. 774-784.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5014919/


Ghose, C., et al., Immunogenicity and protective efficacy of recombinant Clostridium difficile flagellar protein FliC. Emerging Microbes & Infections, 2016. 5(2): p. e8.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4777929/


Kim, H.B., Y. Wang, and X. Sun, A Detrimental Role of Immunosuppressive Drug, Dexamethasone, During Clostridium difficile Infection in Association with a Gastrointestinal Microbial Shift. Journal of microbiology and biotechnology, 2016. 26(3): p. 567-571.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4832933/


Ghose, C., et al., Immunogenicity and Protective Efficacy of Clostridium difficile Spore Proteins. Anaerobe, 2016. 37: p. 85-95.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4770901/

Teng, P., et al., Facilely accessible quinoline derivatives as potent antibacterial agents. Bioorganic & Medicinal Chemistry, 2018. 26(12): p. 3573-3579

https://doi.org/10.1016/j.bmc.2018.05.031


Wang, Y., et al., TPL2 is a key regulator of intestinal inflammation in C. difficile infection. Infection and Immunity, 2018.

http://iai.asm.org/content/early/2018/05/22/IAI.00095-18.abstract


Chunhui, L., et al., Bis‐Cyclic Guanidines as a Novel Class of Compounds Potent against Clostridium difficile. ChemMedChem. 0(0).

https://onlinelibrary.wiley.com/doi/abs/10.1002/cmdc.201800240


Xu, D., et al., Bioprospecting Deep-Sea Actinobacteria for Novel Anti-infective Natural Products. Frontiers in Microbiology, 2018. 9: p. 787.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5936781/


Zhu, D., J.A. Sorg, and X. Sun, Clostridioides difficile Biology: Sporulation, Germination, and Corresponding Therapies for C. difficile Infection. Frontiers in Cellular and Infection Microbiology, 2018. 8: p. 29.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5809512/


Wang Y, Wang S, Bouillaut L, Li C, Duan Z, Zhang K, Ju X, Tzipori S, Sonenshein AL, Sun X. Oral Immunization with Nontoxigenic Clostridium difficile Strains Expressing Chimeric Fragments of TcdA and TcdB Elicits Protective Immunity against C. difficile Infection in Both Mice and Hamsters. Infection and immunity. 86(11) , 2018.

http://www.ncbi.nlm.nih.gov/pubmed/30150259


​Wang S, Wang Y, Cai Y, Kelly CP, Sun X. Novel Chimeric Protein Vaccines Against Infection. Frontiers in immunology. 9: 2440, 2018.

http://www.ncbi.nlm.nih.gov/pubmed/30405630


​Li C, Harmanus C, Zhu D, Meng X, Wang S, Duan J, Liu S, Fu C, Zhou P, Liu R, Wu A, Kuijper EJ, Smits WK, Fu L, Sun X. Characterization of the virulence of a non-RT027, non-RT078 and binary toxin-positive Clostridium difficile strain associated with severe diarrhea. Emerging microbes & infections. 7(1) : 211, 2018.

http://www.ncbi.nlm.nih.gov/pubmed/30542069


2017

2015

2016

Check out our publications at our PubMedhere

2015

2018

2017

Past 2013


Zhang H, W, Li X, Rui X, Sun M, Dong. Lactobacillus plantarum 70810 from Chinese paocai as a potential source of β-galactosidase for prebiotic galactooligosaccharides synthesis. Eur Food Res Technol. 236: 817-826, 2013.

https://link.springer.com/article/10.1007/s00217-013-1938-5

Steele J, K, Chen X, Sun Y, Zhang H, Wang S, Tzipori & H, Feng. Toxemia is the cause of systemic disease in the piglet and mouse models of Clostridium difficile infection. J. Infect. Dis.. 205(3) : 384-91, 2012.

https://www.gastrojournal.org/article/S0016-5085(11)62636-X/abstract


Wu J, Lu Z, Nie M, Zhou H, Sun X, Xue X, Bi J, Fang G. Optimization of cryopreservation procedures for porcine endothelial progenitor cells. Journal of Bioscience and Bioengineering. 113(1) : 117-23, 2012.

http://www.ncbi.nlm.nih.gov/pubmed/22036230

Steele J, Chen K, Sun X, Zhang Y, Wang H, Tzipori S, Feng H. Systemic dissemination of Clostridium difficile toxins A and B is associated with severe, fatal disease in animal models. The Journal of Infectious Diseases. 205(3) : 384-91, 2012.

http://www.ncbi.nlm.nih.gov/pubmed/22147798

Wang H, Sun X, Zhang Y, Li S, Chen K, Shi L, Nie W, Kumar R, Tzipori S, Wang J, Savidge T, Feng H. A chimeric toxin vaccine protects against primary and recurrent Clostridium difficile infection. Infection and Immunity. 80(8) : 2678-88, 2012.

http://www.ncbi.nlm.nih.gov/pubmed/22615245

Sun X, Wang H, Zhang Y, Chen K, Davis B, Feng H. Mouse relapse model of Clostridium difficile infection. Infection and Immunity. 79(7) : 2856-64, 2011.
http://www.ncbi.nlm.nih.gov/pubmed/21576341

Sun X, Savidge T, Feng H. The enterotoxicity of Clostridium difficile toxins. Toxins. 2(7) : 1848-80, 2010.

http://www.ncbi.nlm.nih.gov/pubmed/22069662

Sun X, He X, Tzipori S, Gerhard R, Feng H. Essential role of the glucosyltransferase activity in Clostridium difficile toxin-induced secretion of TNF-alpha by macrophages. Microbial Pathogenesis. 46(6) : 298-305, 2009.

http://www.ncbi.nlm.nih.gov/pubmed/19324080

He X, Wang J, Steele J, Sun X, Nie W, Tzipori S, Feng H. An ultrasensitive rapid immunocytotoxicity assay for detecting Clostridium difficile toxins. Journal of Microbiological Methods. 78(1) : 97-100, 2009.

http://www.ncbi.nlm.nih.gov/pubmed/19393695

He X, Sun X, Wang J, Wang X, Zhang Q, Tzipori S, Feng H. Antibody-enhanced, Fc gamma receptor-mediated endocytosis of Clostridium difficile toxin A. Infection and Immunity. 77(6) : 2294-303, 2009.

http://www.ncbi.nlm.nih.gov/pubmed/19307220

Yang G, Zhou B, Wang J, He X, Sun X, Nie W, Tzipori S, Feng H. Expression of recombinant Clostridium difficile toxin A and B in Bacillus megaterium. BMC Microbiology. 8: 192, 2008.

http://www.ncbi.nlm.nih.gov/pubmed/18990232

Sun X, Göhler A, Heller KJ, Neve H. The ltp gene of temperate Streptococcus thermophilus phage TP-J34 confers superinfection exclusion to Streptococcus thermophilus and Lactococcus lactis. Virology. 350(1) : 146-57, 2006.

http://www.ncbi.nlm.nih.gov/pubmed/16643978

Sun X, Mierke DF, Biswas T, Lee SY, Landy A, Radman-Livaja M. Architecture of the 99 bp DNA-six-protein regulatory complex of the lambda att site. Molecular Cell. 24(4) : 569-80, 2006.

http://www.ncbi.nlm.nih.gov/pubmed/17114059

Peng, Z., et al., Antibiotic Resistance and Toxin Production of Clostridium difficile Isolates from the Hospitalized Patients in a Large Hospital in Florida. Frontiers in Microbiology, 2017. 8: p. 2584.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5744170/

Peng, Z., et al., Update on Antimicrobial Resistance in Clostridium difficile: Resistance Mechanisms and Antimicrobial Susceptibility Testing. Journal of Clinical Microbiology, 2017. 55(7): p. 1998-2008.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5483901/

Clostridioides difficile  Research Team

​University of South Florida